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ABSTRACT
Context: The rise of artificial intelligence of things (AloT) has enabled smart cities and industries, and UAV-assisted edge
computing networks are an important technology to support the above scenarios. UAV-assisted refers to leveraging UAVs as a
dynamic, flexible infrastructure to assist edge network data processing and communication tasks. Multiple UAVs can use their
own resources, and collaborate edge servers to train artificial intelligence (Al) models.
Objective: Compared with cloud-based collaborative computing scenarios, UAV-assisted edge collaborative learning can reduce
training and inference delays and improve user satisfaction. However, UAV-assisted edge networks scenario brings new challenges
in terms of transmission burden and energy consumption.
Method: This paper proposes a prototype-based joint optimization and training software system. The system consists of an
optimization module and a training module. The optimization module first models an optimization problem including energy
consumption and prototype error. Then it solves the optimization problem by problem transformation and plans the location of
each UAV given the objects’ position. After UAVs fly to the designated area and complete data collection, UAVs and the edge
server train a model according to the proposed prototype-based collaborative training module. Our training module enables mul-
tiple UAVs and an edge server to collaboratively train a model by lightweight prototype transmission and prototype aggregation.
We also prove the convergence of the proposed collaborative training method.
Results: Results show our method reduces prototype error and energy consumption by at least 12.31% and improves model
accuracy by 3.62% with a little communication burden.
Conclusion: Finally, we verify system performance through experiments.

1 | Introduction

The rapid development of artificial intelligence (AI) has enabled
various industries, and its combination with the internet of

Abbreviations: AI, artificial intelligence; UAV, unmanned aerial vehicles.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2024 John Wiley & Sons Ltd.

things (AIoT) can support the applications of smart homes [1],
smart cities [2], and smart industries [3]. For smart city and
smart industry scenarios, unmanned aerial vehicles (UAVs) have
emerged as a pivotal technology across various applications such
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as surveillance [4], delivery [5], and environmental monitoring
[6]. Edge computing technology can make up for the limited com-
puting resources of UAVs and UAVs can play a dynamic, flex-
ible infrastructure to assist edge network data processing and
communication tasks. Edge servers can also act as the manager
of UAVs and collaborate with UAVs to complete complex tasks.
UAV-assisted edge computing networks [7] leverage the flexibil-
ity of UAVs in conjunction with edge computing resources to pro-
vide localized data processing and intelligence, thereby offering a
natural platform for collaborative AI model training by continu-
ous knowledge transmission. The core of this paradigm [8] is that
data is processed by UAVs instead of being sent to edge servers for
processing and it is particularly important in scenarios that need
real-time data processing and low-latency inference.

Traditional cloud-based collaborative computing approaches rely
on centralized data and tasks in distant cloud data centers. While
effective in most cases, this paradigm suffers from significant
drawbacks, including heavy transmission burden and substantial
energy consumption. UAV-assisted edge collaborative training
brings the computation closer to the data source, reduces training
and inference delays, and further lowers the energy consump-
tion during collaborative training. However, UAVs-assisted edge
collaborative learning needs more rigorous resource manage-
ment and collaborative training requirements because of the lim-
ited resources of UAVs. First, the burden of transmitting knowl-
edge among UAVs in collaborative learning must be lightweight,
because a heavy transmission burden will directly increase com-
puting latency and energy consumption. Second, the limited bat-
tery of a UAV is needed to fly, hover, compute, and transmit.
Therefore, the energy consumption of all the UAVs needs to
be optimized. Third, it is necessary to consider how to ensure
good model performance in the resource optimization process.
The joint optimization problem of resource and training in a
resource-constrained environment should be solved.

Current UAV’s collaborative learning methods train models by
transmitting auxiliary datasets, models, and intermediate results
such as logits. Constructing and sharing auxiliary datasets is a
common approach in collaborative training. UAVs collect and
select partial datasets to build an auxiliary dataset, which is trans-
mitted to the upper-level server to assist in model training [9, 10].
However, data transmission inevitably incurs high costs and user
privacy leaks. Transmitting and substituting models can explic-
itly improve model performance. The authors [11–13] proposed
a federated learning (FL) method for UAV networks. Local mod-
els are trained locally and sent to the aggregator. The aggregated
model is sent back to the UAVs to conduct the next round of
training. The transmission burden of these approaches is large
because they directly transmit the model, which not only greatly
increases the transmission time but also incurs privacy issues.
The intermediate results obtained by the model’s partial layer
operations contain rich knowledge and therefore are used in het-
erogeneous model collaborative training [14, 15]. However, the
logits transmission is not suited to UAV-assisted edge comput-
ing networks because its transmission cost is proportional to
data volume. Lately, some researchers [16] proposed collabora-
tive learning by prototypes, and its transmission burden can be
reduced by 80% compared with other methods. Prototype is the
mean feature vector of the data belonging to the same class. As

knowledge transmission carriers, prototypes show great potential
in UAV-assisted edge collaborative learning.

Current UAV training optimization methods mainly focus on
the training process [17, 18] and energy model [19–21] in tradi-
tional collaborative methods. On one hand, they only consider
the modeling of the training process including gradient updates
latency and model transmission latency [17, 18, 22] instead of
considering training performance. On the other hand, the opti-
mization problem of training energy consumption and trans-
mission energy consumption are formulated and solved [19, 20,
23–25]. In fact, optimizing the training performance and energy
consumption is often contradicted. UAVs tend to reduce their
energy consumption making training performances degraded, so
a trade-off needs to be ensured between optimizing training per-
formance and energy consumption. However, the above methods
lack the joint consideration of training performance optimization
and energy consumption optimization. When conducting collab-
orative training in UAV-assisted edge computing networks, the
impact of training performance also needs to be considered. This
can ensure that model performance is improved while optimizing
energy consumption.

In this paper, unlike the above UAV collaborative learning
methods and training optimization methods, we propose a
prototype-based joint optimization and training software sys-
tem, which includes an optimization and a training module. In
the optimization stage, we consider the training performance
degradation caused by resource management and name it pro-
totype error. We model the optimization problem of minimizing
energy consumption and prototype error. We assign the target
locations of all UAVs for data collection and training by solving
this problem. In the training stage, we use lightweight proto-
typing as a means of knowledge transfer and collaborate with
multiple UAVs and an edge server to train a model. By aggregat-
ing prototypes and global prototype synchronization, we alleviate
the performance degradation caused by data heterogeneity. This
prototype-based joint optimization and training software system
can be utilized in UAV-assisted edge computing networks, to
continuously improve model performance by alternately running
optimization and training modules.

In summary, our contributions are as follows:

1. We propose a prototype-based joint optimization and train-
ing software system in UAV-assisted edge computing net-
works. This system contains an optimization module and
a training module. The optimization module decides the
data collection positions of UAVs by solving an optimiza-
tion problem. The training module enables multiple UAVs
to perform prototype-based collaborative training with the
edge server using the collected data. To the best of our
knowledge, we are the first to use prototypes to perform col-
laborative training between UAVs and the edge server.

2. In the optimization module, the edge server first models
UAV energy consumption and UAV collaborative learning.
It then formulates the optimization problem to balance pro-
totype error and energy consumption. After problem trans-
formation, the edge server runs a designed algorithm to
solve it. Lastly, the edge server issues instructions to the
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UAVs based on the optimization results, informing them to
fly to the designated location.

3. In the training module, UAVs first obtain the local prototype
by training in its collected dataset. Then all local prototypes
are sent to the edge server. Lastly, the edge server aggre-
gates local prototypes and sends the aggregated global proto-
type to UAVs for the next round of training. Besides, UAVs
regularly transmit feature extractor to the edge server and
receive the aggregated feature extractor. Our approach not
only reduces the transmission burden and alleviates data
heterogeneity.

4. Through extensive simulations, we validate the superiority
of our proposed system. Our optimization module balances
prototype error and energy consumption, outperforming
other optimization methods by 12.31% at reducing global
cost. Our training module can improve UAV model accuracy
by at least 3.62% with merely 4% communication burden
compared with other methods.

The rest of this paper unfolds as follows: Section 2 presents the
related work. Section 3 introduces the overview of prototype-
based joint optimization and training software system. Sections 4
and 5 detail the optimization module and training module,
respectively. Section 6 conducts the simulation and shows the
results. Section 7 discusses the flexibility and scalability of the
proposed system. Lastly, Section 8 summarizes this paper.

2 | Related Work

In this section, we present related work from two perspectives,
including learning optimization and collaborative learning in
UAV-assisted edge networks. These two perspectives correspond
to the optimization module and training module, respectively.

2.1 | Learning Optimization in UAV-Assisted
Edge Networks

Many current optimizations work model a collaborative learning
process, including model calculation and transmission efficiency
when collaboratively training a model. Pham et al. designed sus-
tainable FL-based wireless networks, and goal was to maximize
UAV transmit power efficiency by jointly optimizing bandwidth
allocation, power control, and UAV placement [17]. Luo et al.
proposed to decide on multiple control variables to minimize
the total training time and energy consumption [23] in feder-
ated learning. Tran et al. proposed to balance two trade-offs [24].
The first trade-off is learning time versus user equipment energy
consumption. The second trade-off is computation versus com-
munication learning time. The original problem was then split
into multiple sub-problems, and the closed-form solution was
obtained by grouping users.

Energy is an important optimization aim in UAV-assisted edge
networks. Zhan and Zeng [19] studied on minimizing the energy
consumption of the UAV during the entire flight cycle, includ-
ing the mission completion time, the UAV flight trajectory, and
the communication Base Station (BS) association to reduce the
energy consumption of UAVs. The works of energy minimization

in UAVs are surveyed in [20], and energy optimization is
necessary for many bandwidth-hungry and energy-limited appli-
cations [21]. formulated an energy-efficient trajectory optimiza-
tion problem to maximize energy efficiency by optimizing the
UAV flight trajectory. Du et al. [26] proposed a Lagrangian dual
method to maximize energy efficiency in mobile edge comput-
ing scenarios. Singh and Maciocco [27] proposed to solve a net-
work energy minimization problem with a cardinality constraint
by cell selection. Wu et al. formulated the joint edge aggregation
and association problem in multi-cell federated learning and opti-
mized training time and energy consumption through problem
reformulation and function substitution [22].

However, current optimization works rarely consider model
training performance, they consider the model training pro-
cess such as transmission and calculation. Besides, they lack
consideration of the contradiction between energy consump-
tion and training performance. In this paper, we not only use
lightweight prototypes but also define prototype error as the
criterion for training performance and optimize it together with
energy consumption.

2.2 | Collaborative Learning in UAV-Assisted
Edge Networks

As the computing power of UAVs increases, current works study
collaborative training among multiple UAVs. After collecting the
data, every UAV will perform local training based on the collected
data, and send the knowledge such as gradient or model to the
edge server. The edge server then aggregates this knowledge and
uses the aggregated results for training to eliminate the impact of
heterogeneous data collected by different UAVs. The mainstream
collaboration is sharing knowledge through data, models, or
logits.

The most direct way of collaborative training is to use UAVs to col-
lect data and upload the collected data to the edge server for train-
ing. The trained model can be deployed on UAVs for inference.
Huang and Fu [9] complete data collection through task collab-
oration and design the generalized AoI expectation (GAE) func-
tion to complete the path design to obtain data for edge servers.
Wu et al. proposed to train larger models in the cloud by trans-
mitting processed data from ends [10]. However, data transmis-
sion will increase the cycle of model training and inference, and
the response time of model operation will be longer, which will
reduce user satisfaction. Besides, the solution of directly transmit-
ting data for collaborative training is not feasible in high privacy
protection scenarios [28].

The authors [11] designated a server UAV to conduct efficient
collaborative learning in a UAV swarm through participant and
sample selection according to the communication sensitivity and
resource constraints. Zhang and Hanzo [29] utilize a ground
center as an aggregation server. After collecting data, UAVs
transmit their model weights. By aggregating these weights, the
ground center can obtain a new model. The collaborative training
method of the transmission model uses FedAvg [30] to aggregate
the model. Although collaborative training can be performed, the
transmission of the model consumes a lot of resources and may
infringe on user privacy [31]. It is not suitable for larger-scale
models collaborative training.
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Knowledge Distillation [32] is a popular method to improve
the performance of heterogeneous models. Luo et al. [14,
33] employed a knowledge distillation method to produce a
lightweight model with high accuracy based on the full model
trained in the cloud. Gad et al. [15] proposed a knowledge distilla-
tion (KD)-based collaborative learning method to reduce commu-
nication overhead for the resource-constrained UAV system. As
the knowledge is transmitted by knowledge distillation, the trans-
mission burden of logits is proportional to the amount of data,
and it is not suitable for collaborative learning in UAV scenarios.

Prototype [34], as the average value of the feature vectors of
the same class of data, is the representative feature vector of
all the classes. The transmission burden of prototypes can save
at least 80% of the burden compared with the above methods
[16], so the prototype shows good potential for UAV cooperative
training. Current collaborative learning methods in UAV-assisted
edge networks have not used prototypes as knowledge-sharing
methods to improve model performance. We propose to use
a lightweight prototype to conduct UAV cooperation training.
Besides, the difference between the proposed method and the cur-
rent prototype-based works can be summarized as two aspects.
Different application scenarios: We design an optimization
module considering prototype error and energy consumption
to support UAV collaborative training. However, other methods
lack consideration of resource consumption when using proto-
types and also lack the consideration of UAV scenarios. Differ-
ent training processes: Our training process uses prototypes to
assist in data collection, whereas other methods assume that the
data has already been collected.

2.3 | Motivation

Therefore, we propose a prototype-based collaborative learning
method in UAV-assisted edge computing networks. For learning

optimization, our method innovatively takes the training process
into consideration for optimization and proposes a new opti-
mization target called prototype error. By jointly optimizing pro-
totype error and energy consumption, we fill the gap that cur-
rent training optimization methods lack the consideration of
training performance. For collaborative learning in UAV-assisted
edge networks, we are the first to introduce the prototype
for collaborative training. Due to its lightweight nature, the
prototype-based collaborative training approach shows great
potential in UAV-assisted edge networks.

3 | System Overview

In this section, we introduce our prototype-based joint optimiza-
tion and training software system. The software system can run
on multiple UAVs and an edge server. As shown in Figure 1, the
entire system includes an optimization module and a training
module. First, the edge server obtains the location of the objects
𝑜1, 𝑜2, and 𝑜3 to be detected in the network, prepares to dispatch
the UAVs to collect data on these objects, and uses the collected
data for training. Second, the edge server obtains the resource
information of UAVs, including communication channels, UAV
computing power, initial position sp, and so forth. Then the edge
server runs the optimization module based on this information
and sends control information to the UAVs. Lastly, after UAVs
receive the control information, they will fly to the target loca-
tion to collect data. UAVs run the training module and collaborate
with the server to train by transmitting prototypes.

3.1 | Optimization Module

The optimization module collects the resource information from
UAVs and solves the joint optimization problem defined in
Section 4. The entire optimization module needs to be completed
step by step.

FIGURE 1 | Prototype-based joint optimization and training software system.
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1. The edge server needs to know how many UAVs are within
its range and establish connections with these UAVs.

2. The edge server model data collection, cooperative training,
and consumption energy for all UAVs.

3. An optimization problem with multiple constraints is for-
mulated by the edge server.

4. The edge server solves this optimization problem to produce
the results, which guide their data collection next time.

3.2 | Training Module

The training module in our prototype-based joint optimization
and training software system is run on both the edge server and
UAVs. The entire training module needs to complete the follow-
ing functions step by step.

1. The edge server produces control information of multiple
UAVs and objects based on the optimization module’s out-
put results.

2. The control information is sent to the UAVs, which instructs
the UAVs which objects should be detected. After receiving
the control instructions, the UAVs will fly to the correspond-
ing positions for data collection and training.

3. UAVs send the local prototypes to the edge server for
aggregation.

4. The edge server aggregates local prototypes to the global
prototype and sends the global prototype to all the UAVs to
assist them in the next round of training. The detail of UAV
training process is shown in Section 5.

4 | The Optimization of Data Collection
and Training

In this section, we introduce the optimization of data collec-
tion and training. It considers energy consumption and pro-
totype error and corresponds to the optimization module in
Figure 1.

4.1 | Problem Statement

In our scenario, there are 𝑁
𝑜

objects forming the set of objects
O =

{
𝑜1, . . . , 𝑜|𝑁

𝑜
|

}
. We have 𝑁 UAVs available forming 𝑁 =

{
𝑛1, . . . , 𝑛|𝑁|

}
for scheduling to collect video data of these objects

for training. The entire scenario is modeled as a two-dimensional
Euclidean space. An edge server 𝑆 is deployed for management.
Before the commencement of each training round, each UAV flies
to its designated position and hovers. During the training phase,
the UAVs capture image data of objects within their field of view
and collaborate with the edge server to perform training tasks.
The main notations used in this paper in Table 1.

4.1.1 | Data Collection Model

Each UAV 𝑛 ∈ N, positioned at pos
𝑛
=
(
𝑥
𝑛
, 𝑦
𝑛

)
, collects data from

objects within its field of view, where the maximum effective
range is 𝑑

𝑁
. The set DT

𝑛
of objects collected by UAV 𝑛 can be

expressed as

DT
𝑛
=
{

dt𝑜𝑖
𝑛
|𝑜
𝑖
∈ O, dist

(

pos
𝑛
pos

𝑜
𝑖

)

≤ 𝑑
𝑁

}

(1)

TABLE 1 | Main notations.

Symbols Description

Optimization related
𝑁
𝑜
, O, 𝑁 , N The number of objects, the set of objects, the number of UAVs, the set of UAVs

pos
𝑛
, 𝑑

𝑁
The position of UAV 𝑛, the maximum effective range for UAVs

DT
𝑛
, dt𝑜𝑖

𝑛
All data collected by UAV 𝑛, data of object 𝑜

𝑖
collected by UAV 𝑛

𝑝
𝑜
𝑖 , 𝑝O The local prototype of object 𝑜

𝑖
, the global prototype of all the objects

Err
(

pos
𝑛

)
, Err(POS) The prototype error of position pos

𝑛
, the prototype error of all the positions in POS

𝐸
cmp
𝑛

, 𝐸tran
𝑛

, 𝐸(N, 𝐹 , 𝑃 ) Training energy consumption of UAV 𝑛, transmission energy consumption of UAV 𝑛, the
sum of energy consumption of UAV 𝑛

𝑤1, 𝑤2 Optimization weight for prototype error, optimization weight for energy consumption
𝑓min, 𝑓max, 𝑝min, 𝑝max The minimum value of CPU frequency, the maximum value of CPU frequency, the

minimum value of transmission power, the maximum value of transmission power

Learning framework related
𝐷
𝑛
, ∣ 𝐷

𝑛
∣, 𝑋

𝑖
, 𝑌

𝑖
Dataset of UAV 𝑛, sample number of the dataset, data, label

𝑤
𝑛
, ,, 

𝑛
Model of UAV 𝑛, loss function, distance function, feature extractor of end device 𝑛

𝑝
𝑛
, 𝑝

𝑔
Local prototype of UAV 𝑛, global prototype

Learning framework related
𝑡1, 𝑡2 𝑡1-th communication round, 𝑡2-th communication round
𝐸, 𝑇 Local update step number by a UAV, the global round number
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where pos
𝑜
𝑖

=
(
𝑥
𝑜
𝑖

, 𝑦
𝑜
𝑖

)
denotes the position of the object 𝑜

𝑖
∈ O

in the two-dimensional Euclidean space, and the Euclidean dis-
tance between UAV 𝑛 and object 𝑜

𝑖
is defined as

dist
(

pos
𝑛
, pos

𝑜
𝑖

)

=
√

(
𝑥
𝑛
− 𝑥

𝑜
𝑖

)2 +
(
𝑦
𝑛
− 𝑦

𝑜
𝑖

)2 (2)

In this case, dt𝑜𝑖
𝑛

represents the data collected from object 𝑜
𝑖

by
UAV 𝑛.

4.1.2 | Collaborative Training Model

Before each training round, the edge server 𝑆 sends the aggre-
gated feature extractor to all UAVs and synchronizes the feature
extractor to each UAV, denoted as  (⋅). The local model in UAV 𝑛
is 𝜔

𝑛
. The aggregated feature extractor can alleviate data hetero-

geneity and it is used to generate prototypes. We assume all UAVs
have the equal ability to take photos of the same object, which
means the same object will produce the same prototype by the
synchronized feature extractor. For any object 𝑜

𝑖
, its prototype 𝑝𝑜𝑖

is as follows:

𝑝
𝑜
𝑖 = 

𝑛

(
𝜔
𝑛
, dt𝑜𝑖

)
(3)

For all image data of object 𝑜
𝑖
collected by all UAVs, the generated

global prototype can be represented as

𝑝
O =

∑

∪
𝑜
𝑖
∈O

𝑝
𝑜
𝑖

𝑛
(4)

Inspired by a definition of approximation error [35], for some
position pos

𝑛
that UAV 𝑛 flies, its covered objects are O

𝑛
. There-

fore, its prototype error is

Err
(

pos
𝑛

)
=
|
|
|
|
|

∑

𝑜
𝑖
∈O

𝑛

𝑝
𝑜
𝑖 − 𝑝O

|
|
|
|
|

(5)

We need to set the optimized position for each UAV to minimize
the prototype error, which can be written in Equation (6). It is
worth noting that different UAVs may detect duplicate objects
due to their coverage. These duplicate objects are processed by
prototype aggregation on the edge server to eliminate heterogene-
ity.

Err(POS) =
∑

𝑛∈N
Err

(
pos

𝑛

)
(6)

4.1.3 | UAV Energy Model

The UAV energy consumption model describes the energy usage
during UAV movement, hovering, local training, and prototype
uploading.

Before each training round, the total energy of each UAV upon
departure is 𝐸total. In our scenario, we approximate that the UAV
moves at a constant speed 𝑣, where the movement power and hov-
ering power are 𝑄

𝑚
and 𝑄

ℎ
, respectively.

We define the set𝐹 =
{
𝑓
𝑛
|𝑛 ∈ N

}
, which represents the CPU fre-

quencies for all UAVs, where 𝑓
𝑛

is the CPU frequency for UAV 𝑛.

Additionally, we define the set 𝑃 =
{
𝑝
𝑛
|𝑛 ∈ N

}
, representing the

transmission power of each UAV, where 𝑝
𝑛

is the transmission
power for UAV 𝑛.

UAV Movement Energy Consumption. First, we discuss the
movement energy consumption 𝐸𝑚

𝑛
of UAV 𝑛. The shortest path

length 𝑙shot from its starting position 𝑠 to the designated posi-
tion pos

𝑛
can be derived using an obstacle-avoiding shortest path

algorithm in the Euclidean space. Thus, the movement time is

𝑡
𝑚

𝑛
=
𝑙shot

𝑣

(7)

Considering that the UAV needs to make a round trip, the move-
ment energy consumption is

𝐸
𝑚

𝑛
= 2𝑄

𝑚
𝑡
𝑚

𝑛
= 2𝑄

𝑚

𝑙shot

𝑣

(8)

UAV Hovering Energy Consumption. Next, we discuss the
hovering energy consumption 𝐸𝑚

𝑛
of UAV 𝑛. The total time for

each training round is 𝑡round. Assuming the UAV has sufficient
energy to hover until the training concludes and return, the hov-
ering time for UAV 𝑛 is

𝑡
ℎ

𝑛
= 𝑡round − 𝑡𝑚𝑛 (9)

Thus, the hovering energy consumption of UAV 𝑛 is

𝐸
ℎ

𝑛
= 𝑄

ℎ
𝑡
ℎ

𝑛
= 𝑄

ℎ

(

𝑡round −
𝑙shot

𝑣

)

(10)

The energy consumption model also describes the energy usage
during local training and prototype upload.

UAV Training Energy Consumption. The energy consump-
tion for local training by UAV 𝑛 is defined as

𝐸
cmp
𝑛

= 𝑟 ⋅ 𝛽
2
𝑓

2
𝑛
𝛼
𝑛
∣𝐷

𝑛
∣ (11)

The number of local training rounds per global round is 𝑟. Effec-
tive capacitance coefficient is 𝛽

2
. CPU frequency of UAV 𝑛 is 𝑓

𝑛
.

The number of CPU cycles required to process one sample is 𝛼
𝑛
.

The number of samples of UAV 𝑛 is ∣𝐷
𝑛
∣.

Prototype Uploading Energy Consumption. The energy con-
sumption for uploading prototypes from UAV 𝑛 to edge server𝑆 is

𝐸
tran
𝑛

=
𝑝
𝑛
𝑑proto ∣𝑆

∣

𝐵
max
𝑆

log
(

1 + ℎ
𝑆
𝑝
𝑛

𝑁nos

) (12)

In the above equation, The transmission power of UAV 𝑛 is
𝑝
𝑛
. The size of the prototype data to be uploaded is 𝑑proto. The

number of UAVs connected to edge server 𝑆 is ∣
𝑆
∣. The maxi-

mum bandwidth of the edge server 𝑆 is 𝐵max
𝑆

. The channel gain
between UAV 𝑛 and edge server 𝑆 is ℎ

𝑆
. The background noise

is 𝑁nos.

The total energy consumption in a global round is given in
Equation (13), which is equivalent to 𝐸(POS, 𝐹 , 𝑃 ).

𝐸(N, 𝐹 , 𝑃 ) = 𝐸(POS, 𝐹 , 𝑃 ) =
∑

𝑛∈N

(
𝐸
𝑚

𝑛
+ 𝐸ℎ

𝑛
+ 𝐸cmp

𝑛
+ 𝐸tran

𝑛

)

(13)
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4.1.4 | Problem Formulation

We define the optimization problem for UAV-assisted edge col-
laborative learning to minimize prototype errors and energy con-
sumption. The goal is to find the optimal position set for all UAVs,
computing frequencies, and transmission powers, represented as
POS, 𝐹 , and 𝑃 , respectively. The optimization problem is formu-
lated as follows:

(P𝟏) min
POS,𝐹 ,𝑃

𝑤1 ⋅ Err(POS) +𝑤2 ⋅ 𝐸(POS, 𝐹 , 𝑃 ) (14a)

𝑠.𝑡. 𝑓min ≤ 𝑓𝑛 ≤ 𝑓max, ∀pos
𝑛
∈ POS (14b)

𝑝min ≤ 𝑝𝑛 ≤ 𝑝max, ∀pos
𝑛
∈ POS (14c)

𝑥
𝑛
, 𝑦
𝑛
∈ ℝ, ∀pos

𝑛
∈ POS (14d)

∣POS ∣≤ 𝑁 (14e)

The optimization is subject to constraints (14b) and (14c), which
ensure that the CPU frequency 𝑓

𝑛
and transmission power 𝑝

𝑛
for

each UAV 𝑛 ∈ N remain within their respective allowable ranges,
defined by 𝑓min, 𝑓max, 𝑝min, and 𝑝max. Constraint (14d) ensures
that the coordinates 𝑥

𝑛
and 𝑦

𝑛
of each UAV 𝑛 ∈ N are real num-

bers, reflecting the physical positions of the UAVs in a continuous
space. Constraint (14e) represents the need to determine loca-
tions for at most 𝑁 UAVs. The weights 𝑤1 and 𝑤2 are used to
balance the importance of minimizing prototype error and energy
consumption, respectively. By tuning these weights, we can pri-
oritize different aspects of the UAV-assisted edge collaborative
learning process depending on the system requirements. Then we
have the following propositions and theorems:

Proposition 1. (P1) problem is NP-hard.

Proof. Consider a special case of problem (P1) with the follow-
ing parameters: the energy consumption term is ignored, that is,
𝑤2 = 0, and the UAV selection is reduced to selecting a set of posi-
tions for UAVs to minimize the prototype error Err(N). In this
special case, the problem can be reformulated as a disk-covering
problem in 2D, where each UAV has a coverage area represented
by a disk and we aim to cover all targets (regions or objects) with
the minimum number of UAVs. The disk-covering problem is
known to be NP-hard in general [36, 37]. Thus, (P1) is NP-hard
in general. ◽

4.2 | Solution

4.2.1 | Error-Based Area Partition

In order to better address this problem, we initially partition the
entire area into multiple subareas. These subareas are defined
based on equivalent error metrics as follows:

Definition 1. Equivalent Error Subarea: Given a subarea
̂sub, it is defined as an equivalent error subarea if, for any posi-
tions pos

𝑛1
and pos

𝑛2
of UAVs 𝑛1 and 𝑛2, where pos

𝑛1
, pos

𝑛2
∈ ̂sub,

the condition Err
𝑛1
= Err

𝑛2
holds true.

FIGURE 2 | Area partition.

The method for partitioning into Equivalent Error Subareas is as
follows: Based on Equation (1), we draw circles with each object
𝑜
𝑖

at the center and 𝑑
𝑁

as the radius to divide the entire region
into multiple non-overlapping subareas. The set of these areas is
denoted as ̂Sub. As illustrated in Figure 2, three objects divide the
region into eight subareas.

We then propose the following proposition:

Proposition 2. Each subarea obtained by the area partition
method in this section is an Equivalent Error Subarea.

Proof. In the area partition method, drawing a circle with any
object 𝑜

𝑖
as the center divides the area into two parts. Any posi-

tion within the circle can collect data from 𝑜
𝑖
, whereas positions

outside cannot, thus each part satisfies Definition 1. Iterating this
partitioning and employing mathematical induction leads to the
conclusion. ◽

4.2.2 | Candidate UAV Position Extraction

For each Equivalent Error Subarea ̂sub, we identify the position
closest to the starting position 𝑠 as the candidate UAV position.
The procedure is as follows:

For each subarea, we divide its boundary into two parts: arcs
centered at different circle centers and the intersection points
between these arcs. On the one hand, for each arc, we calculate
the shortest obstacle-avoiding path from its center to the intersec-
tion points on the arc (if any). These intersection points serve as
candidate points for that arc.

On the other hand, the intersection points between arcs are also
treated as candidate points, for which we similarly compute the
shortest paths using existing obstacle-avoidance algorithms.

Subsequently, we compare the path lengths from the starting
position 𝑠 to these candidate points and select the location of the
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point with the shortest path as the Candidate UAV Position for
that Equivalent Error Subarea ̂sub.

By iterating over all ̂sub ∈̂Sub, we compile a set of Candidate
UAV Positions, denoted as POScan.

4.2.3 | Problem Transformation

We introduce a problem transformation process from (P1) to
(P4). Given any position, (P1) is transformed to minimize 𝑔 by
choosing the optimal frequency and power. Referred by [22], this
problem is a convex problem and can be solved by convex opti-
mization solvers such as CVX. So we can easily get 𝐹 ∗ and 𝑃 ∗ if
given POS. Therefore, (P1) is transformed to (P2) with 𝐹 ∗(POS)
and𝑃 ∗(POS). We use𝐹 ∗ and𝑃 ∗ to replace𝐹 ∗(POS) and𝑃 ∗(POS)

(P𝟐)min
POS

𝑔(POS) = 𝑤1 ⋅ Err(POS) +𝑤2 ⋅ 𝐸(POS, 𝐹 ∗, 𝑃 ∗)
(15a)

𝑠.𝑡. 𝑥
𝑛
, 𝑦
𝑛
∈ ℝ, ∀pos

𝑛
∈ POS (15b)

∣POS ∣≤ 𝑁 (15c)

Definition 2. (Non-negative, Monotone, Submodular
Function) Given a finite set  , a set function 𝑔 ∶ 2 → ℝ is
termed non-negative, monotone (non-decreasing), and submod-
ular if it satisfies [38]:

1. Non-negativity: 𝑔(Ø) = 0 and 𝑔() ≥ 0 for all ⊆  .

2. Monotonicity: 𝑔() ≤ 𝑔() for all ⊆  ⊆  .

3. Submodularity: 𝑔( ∪ {𝑥}) − 𝑔() ≥ 𝑔( ∪ {𝑥}) − 𝑔()
for all ⊆  ⊆  , 𝑥 ∉ .

Definition 3. (Matroid Structure) A matroid  = (Θ,),
where Θ is a finite set and  ⊆ 2Θ is a collection of subsets,
adheres to:

1. Ø ∈ .

2. If 𝐿 ∈  and 𝐿′ ⊆ 𝐿, then 𝐿′ ∈ .

3. If 𝐿1, 𝐿2 ∈  and ∣𝐿1∣< ∣𝐿2∣, there exists 𝑒 ∈ 𝐿2∖𝐿1 such
that 𝐿1 ∪ {𝑒} ∈ .

Definition 4. (Uniform Matroid) A matroid = (Θ,) is
said to be uniform for a given integer 𝑘 if = { ⊆ Θ ∶ || ≤ 𝑘}.

We define the uniform matroid  =
(
POScan,

)
, where  =

{
 ⊆ POScan ∶ || ≤ 𝑁

}
. Then the characteristics of a set func-

tion relevant to our optimization problem is defined as follows:

(P𝟑)min
POS

𝑔(POS) (16a)

𝑠.𝑡.  =
{
 ⊆ POScan ∶ || ≤ 𝑁

}
(16b)

POS ∈  (16c)

Proposition 3. (P3) is a problem of the Non-negative,
Non-monotone, Supermodular Function Minimization under
a Uniform Matroid constraint.

Proof. First, we prove the non-negative of (P3). Obviously,
Err(POS) is non-negative because it is the absolute value of proto-
type error. (POS, 𝐹 , 𝑃 ) is non-negative because energy is greater
than or equal to 0. Therefore, (P3) is non-negative.

Second, Err(POS) is monotone decreasing with the number of
Err(POS) increases. Adding more elements to Err(POS) will
increase the number of detected objects, thus reducing the pro-
totype error, so Err(POS) is monotone decreasing. In contrast,
adding more elements to Err(POS)will inevitably consume more
energy, so Err(POS) is monotone decreasing. The opposite mono-
tonicity of these two components decides (P3) is non-monotone.

Third, we discuss the modularity of (P3). Having ∀POS1 ⊆ POS2,
it means Err

(
POS1

)
≥ Err

(
POS2

)
. For a new position pos

𝑛
∉

POS2, when pos
𝑛

is added into POS1 and POS2, three cases need
to be considered:

1. The objects detected by pos
𝑛

have been covered by
POS1 and POS2. This means adding pos

𝑛
does not affect

Err
(
POS1

)
and Err

(
POS2

)
. Therefore, Err

(
POS1 ∪ pos

𝑛

)
−

Err
(
POS1

)
= 0 = Err

(
POS2 ∪ pos

𝑛

)
− Err

(
POS2

)
= 0.

2. The objects detected by pos
𝑛

have been covered by POS2 but
not covered by POS1. So Err

(
POS1 ∪ pos

𝑛

)
− Err

(
POS1

)
=

−Err
(

pos
𝑛

)
. For POS2, Err

(
POS2 ∪ pos

𝑛

)
− Err

(
POS2

)
=

0. Therefore, Err
(
POS2 ∪ pos

𝑛

)
− Err

(
POS2

)
>

Err
(
POS1 ∪ pos

𝑛

)
− Err

(
POS1

)
.

3. The objects detected by pos
𝑛

have not been covered by POS2
and POS1. In this case, Err

(
POS2 ∪ pos

𝑛

)
− Err

(
POS2

)
=

Err
(
POS1 ∪ pos

𝑛

)
− Err

(
POS1

)
= Err

(
pos

𝑛

)
.

Therefore, Err
(
POS2 ∪ pos

𝑛

)
− Err

(
POS2

)
≥ Err

(
POS1 ∪ pos

𝑛

)

− Err
(
POS1

)
, so Err(POS) is supermodular. For 𝐸(POS),

𝐸

(
POS1 ∪ pos

𝑛

)
− 𝐸

(
POS1

)
≤ 𝐸

(
POS2 ∪ pos

𝑛

)
− 𝐸

(
POS2

)
=

𝐸
cmp
pos

𝑛

+ 𝐸tran
pos

𝑛

Therefore, 𝐸(POS) is supermodular. In this way,
(P3) is supermodular.

Besides, The constraints in (P3) are matroid constraints accord-
ing to Definition 3. We can conclude that (P3) is a problem of
the Non-negative, Non-monotone, Supermodular Function Min-
imization under a Uniform Matroid constraint. ◽

We invert (P3) to make it become a negative non-monotone sub-
modular maximization problem under a uniform matroid con-
straint. However, (P3) is still difficult to solve. We add a term
𝐺 to ensure 𝐺 − 𝑔(POS) non-negative. Specifically,𝐺 = Errmax +
𝐸max. Errmax and 𝐸max are defined in Equations (17) and (18).

Errmax = Err
(
POScan

)
(17)

𝐸max = max
pos

𝑛
∈POScan

𝐸
cmp
pos

𝑛

+ 𝐸tran
pos

𝑛

(18)

Therefore, the above problem is then formulated as

(P𝟒)max
POS

𝑓 (POS) = 𝐺 − 𝑔(POS) (19a)

𝑠.𝑡.  =
{
 ⊆ POScan ∶ || ≤ 𝑁

}
(19b)

POS ∈  (19c)
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Proposition 4. (P4) is a problem of the (non-negative) Mono-
tone Submodular Function Maximization under a Uniform
Matroid constraint (MSFMUM).

Proof. We can easily know (P4) is non-negative because the
definitions of Errmax and 𝐸max. The inversion and the addition
of 𝐺 do not affect monotonicity, so (P4) is still non-monotone.
The inversion makes (P4) become the submodular maximization
problem with a uniform matroid constraint. Therefore, we prove
this proposition. ◽

4.2.4 | Submodular-Based Training Optimization

Given that (P4) is identified as an MSFMUM problem, we
are inspired by the methodologies discussed in [39] to propose
Algorithm 1. 𝑃 ( ) is a matroid polytope, the convex-hall of all
its independent sets, which is also written as 𝑃 .

ALGORITHM 1 | Submodular-based training optimization.

Input: Set function 𝑓 ∶ 2POScan → ℝ+, 𝑛←∣POScan∣,
𝑇 ← 1, 𝛿 ← 𝑇 (⌈n5T⌈)−1

Output: Set POS under Uniform Matroid Con-
straint

𝑡 ← 0,POS(0)← 𝟏Ø

while 𝑡 ≤ 𝑇 do

for all 𝑒 ∈ POScan do

𝜔
𝑒
(𝑡) ← 𝑓

(
POS(𝑡) ∪ 𝟏

𝑒

)
− 𝑓 (POS(𝑡)) ≥ 𝑤

end for

𝐼(𝑡) ← argmax
{
𝑥
∗
𝜔
𝑒
(𝑡)|𝑥 ∈ 𝑃

}

for all 𝑒 ∈ POScan do

POS
𝑒
(𝑡 + 𝛿)← POS

𝑒
(𝑡) + 𝛿𝐼

𝑒
(𝑡) ⋅

(
1 − POS

𝑒
(𝑡)
)

end for

𝑡 ← 𝑡 + 𝛿
end while

return POS(𝑇 )

This algorithm applies a measured continuous greedy strategy,
integrating a greedy mechanism with all elements to optimize a
submodular function under the constraints of a matroid. Starting
from a set (all elements with 0), it incrementally adjusts the
probability of elements that contribute the most to the function’s
value by the weights from the matroid polytope.

The primary goal is to approximate the optimal value of the sub-
modular function as closely as feasible, ensuring computational
efficiency. This is achieved by a strategic balance between the
exploration of new possible solutions and the exploitation of the
most promising candidates found thus far. The solution it pro-
duces seeks to be within an acceptable range of the theoretical
maximum, utilizing the property of diminishing returns inherent
to submodular functions to maximize overall gains from each ele-
ment added. After getting POS(𝑇 ), we can run pipage rounding
to obtain a set [39].

Ultimately, we can derive the following theorem:

Theorem 1. The proposed approach achieves an approxima-
tion ratio of 1

𝑒

− 𝑜(1) for the problem (P1).

Proof. The strategy to derive an approximation guarantee from
(P1) to (P4) involves a meticulous process, ensuring that the solu-
tions remain optimal or near-optimal at each stage. The trans-
formation from (P1) to (P2) employs convex optimization tech-
niques which guarantee that, for any configuration of POS, the
corresponding parameters 𝐹 and 𝑃 are optimized. This step con-
firms that the optimality of (P2) is retained for any given set of
positions.

In the transition from (P2) to (P3), by utilizing the Candidate
UAV Position Extraction method, the optimal candidate strate-
gies for each subregion are identified. This careful selection
ensures that the set of optimal solutions from (P2) is included
within the decision space for (P3), thereby maintaining the opti-
mality of the solutions across these transformations.

The equivalence between (P3) and (P4) guarantees that any opti-
mal solution applicable to (P3) is also applicable and optimal for
(P4). This consistency is crucial for the integrity of the solution
through these stages.

Lastly, the implementation in (P4), as informed by the method-
ologies in [39], is capable of achieving an approximation ratio
of 1

𝑒

− 𝑜(1). This final step demonstrates that the entire process
from (P1) through (P4) adheres to the theoretical framework and
achieves near-optimal results within the expected bounds.

Thus, we conclude that the original problem (P1) achieves an
approximation ratio of 1

𝑒

− 𝑜(1), validating the effectiveness and
efficiency of the proposed approach across all transformations
and problem stages. ◽

5 | Prototype-Based Collaborative Learning

In this section, we introduce how to collaborate training between
multiple UAVs and an edge server through prototype interaction
in the UAV-assisted edge computing networks. This section cor-
responds to the training module in Figure 1.

5.1 | Collaborative Training Method

Given an edge computing scenario with multiple UAVs N =
{
𝑛1, . . . , 𝑛|𝑁|

}
and one edge server 𝐸, every UAV 𝑛 ∈ N has a

heterogeneous dataset𝐷
𝑛
=
{(
𝑋
𝑖
, 𝑌
𝑖

)}|𝐷𝑛|
𝑖=1 , where𝑋

𝑖
is the data,

𝑌
𝑖

is the corresponding label and ∣𝐷
𝑛
∣ is the number of samples

belonging to UAV 𝑛. We present how they can improve model
performance through the interaction of lightweight prototypes in
Algorithm 2.

After all the UAVs have completed data collection, they conduct
model training based on the collected data. Every UAV 𝑛 has its
own model 𝜔

𝑛
. The UAVs will perform local training with dif-

ferent strategies according to whether the global class prototype
𝑝
𝑔

is stored in the local storage area. If a UAV does not have the
global prototype 𝑝

𝑔
from the server, it will minimize the loss func-

tion of Equation (20). If UAV 𝑛 receives and stores the global

9 of 18
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ALGORITHM 2 | Collaborative training by prototype interaction.

Input: Datasets of each UAV

Output: Models trained on each UAV

Collect data and initialize the local model𝜔
𝑛

for each round t=1, 2, …, T do

for each UAV n=1, 2, …, N do

Train locally by Equation (20) or
Equation (21)

Obtain local class prototype 𝑝
𝑛
by

Equation (22)
Send 𝑝

𝑛
to the edge server

if t % 𝑇
𝑠
==0 then

Send 𝑓
𝑛
to the edge server

end if

end for

Compute the global class prototype 𝑝
𝑔

by Equation (23)
if t % 𝑇

𝑠
==0 then

Compute the global feature extractor𝑓
𝑔
by

Equation (24)
Send 𝑓

𝑔
to all the UAVs for the next round

training

end if

Send 𝑝
𝑔
to all the UAVs for the next round

training

end for

prototype 𝑝
𝑔

of the last round, it will minimize the loss function
of Equation (21), where 𝑝

𝑛
is the local class prototype of UAV

𝑛, 
(
𝑝
𝑔
, 𝑝
𝑛

)
measures the distance between global prototype 𝑝

𝑔

and local prototype 𝑝
𝑛

and 𝜆 is the control parameter for loss.
The design principle of 

(
𝑝
𝑔
, 𝑝
𝑛

)
is to alleviate the performance

degradation caused by data heterogeneity by bringing the local
prototype and the global prototype closer together during local
training in every UAV.


(
𝐷
𝑛
, 𝜔

𝑛

)
= 

𝑆

(

𝑛

(
𝜔
𝑛
𝑋
𝑖

)
, 𝑌
𝑖

)
(20)


(
𝐷
𝑛
, 𝜔

𝑛

)
= 

𝑆

(

𝑛

(
𝜔
𝑛
𝑥

)
, 𝑦

)
+ 𝜆 ⋅

(
𝑝
𝑔
, 𝑝
𝑛

)
(21)

After completing a round of local training, every UAV computes
its class prototype. Taking the prototype of the jth class as an
example, it is computed with Equation (22), where 𝐷𝑗

𝑛
repre-

sents the jth category data in the UAV 𝑛 and ∣ 𝐷𝑗

𝑛
∣ represents

the number of jth class of data. 𝑓
𝑛

is the feature extractor part
of 𝜔

𝑛
. 𝑥 and 𝑦 represent a sample and its label in the dataset.

The essence of the prototype is the average value of the feature
vectors corresponding to different data in the same class. Each
UAV computes its own class prototype according to the class it
has. If the UAV 𝑛 detects different objects 𝑜1, 𝑜2, 𝑜3, then its cor-
responding class prototype should be

{
𝑝
𝑜1
𝑛
, 𝑝
𝑜2
𝑛
, 𝑝
𝑜3
𝑛

}
. After com-

pleting local training, all UAVs send their class prototypes to the
edge server. It should be noted that when the number of loop
rounds reaches the synchronization period 𝑇

𝑠
, all UAVs need to

send feature extractors to the edge server, and the edge server

will complete the aggregation to further reduce the impact of data
heterogeneity.

𝑝
𝑗

𝑛
= 1

|
|
|
𝐷
𝑗

𝑛

|
|
|

∑

(𝑥,𝑦)∈𝐷𝑗

𝑛


𝑛
(𝑥) (22)

After the edge server obtains the class prototypes from all the
UAVs, these prototypes are aggregated into a global prototype
with Equation (23). The global class prototype is the weighted
sum of local class prototypes, and the weight of each local class
prototype is calculated based on the proportion of the amount of
data of this UAV in the global dataset.

𝑝
𝑗

𝑔
=

|
|
|
𝐷
𝑗

𝑛

|
|
|

∑

𝑛⊂N

|
|
|
𝐷
𝑗

𝑛

|
|
|

𝑝
𝑗

𝑛
(23)


𝑔
=

|
|
|
𝐷
𝑗

𝑛

|
|
|

∑

𝑛⊂N

|
|
|
𝐷
𝑗

𝑛

|
|
|


𝑛

(24)

After the edge server calculates the global prototype, it will send
this global prototype to the corresponding UAVs to support their
next round of training. When the number of loop rounds reaches
the synchronization period 𝑇

𝑠
, the edge server aggregates the

received feature extractors with Equation (24), generates a global
feature extractor, and sends it back to all the UAVs. All the drones
will continue to train with the global prototype and the global fea-
ture extractor it has received.

𝑦new = arg min
𝑗

∥ 
(
𝜔
𝑛
; 𝑥new

)
− 𝑝(𝑗)

𝑔
∥2 (25)

In the inference stage, for a new sample 𝑥new, the UAV can pre-
dict its label 𝑦new based on the distance between its prototype and
every class prototype. In Equation (25), the class prototype that is
closest to the prototype of 𝑥new is found, and its label will become
the prediction label.

5.2 | Convergence Analysis

We conduct a theoretical examination and analyze the conver-
gence bound for our method. We focus on convergence analysis
of UAV-assisted edge collaborative learning via transmitting pro-
totypes. We give common assumptions holding for convergence
analysis literature [40, 41].

• Assumption 1. All the local objective functions of UAVs
are 𝐿1-smooth, that is, given two communication round 𝑡1,
𝑡2, ∥∇

𝑡1
− ∇

𝑡2
∥2 ≤ 𝐿1∥𝜔𝑡1 − 𝜔𝑡2∥2.

• Assumption 2. Stochastic gradient is an unbiased esti-
mator of the local gradient for each UAV, that is, ∀𝑛 ∈
{

1, 2, . . . , 𝑛|𝑁|

}
, 𝔼

𝜉
𝑛
∼𝐷

𝑛

[
𝑔
𝑛,𝑡1

]
= ∇

(
𝜔
𝑛,𝑡1

)
.

• Assumption 3. The expectation of the stochastic gra-
dient for all UAVs is bounded by 𝐺, that is, ∀𝑛 ∈
{

1, 2, . . . , 𝑛|𝑁|

}
, 𝔼

[
∥ 𝑔

𝑛,𝑡1
∥2
]
< 𝐺.

• Assumption 4. The feature extraction function
for all the UAVs is 𝐿2-smooth, that is, given any two
communication round 𝑡1, 𝑡2, ∀𝑛 ∈

{
1, 2, . . . , 𝑛|𝑁|

}
,
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‖
‖
‖

𝑛

(
𝜙
𝑛,𝑡1

)
− 

𝑛

(
𝜙
𝑛,𝑡2

)‖
‖
‖
≤ 𝐿2

‖
‖
‖
𝜙
𝑛,𝑡1
− 𝜙

𝑛,𝑡2

‖
‖
‖2

, where 
𝑛

is
the embedding function parameterized by 𝜙

𝑛
.

Lemma 1. Let Assumptions 1 and 2 hold. From the beginning
of the communication round to 𝐸 local update step, the loss func-
tion of any UAV can be bounded as

𝔼
[
(𝑡+1)𝐸

]
≤ 𝔼

[
tE

]
− 𝜂

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 +

𝐿1𝜂
2EG2

2

Proof. For any end, 𝜔tE+1 = 𝜔tE − 𝜂𝑔tE holds, then

tE+1
(𝑎)
≤ tE +

⟨
∇tE,

(
𝜔tE+1 − 𝜔tE

)⟩
+
𝐿1

2
‖
‖𝜔tE+1 − 𝜔tE

‖
‖

2
2

= tE − 𝜂⟨∇tE, 𝑔tE⟩ +
𝐿1

2
‖
‖𝜂𝑔tE

‖
‖

2
2

Taking expectations of both sides of the above equation, then

𝔼
[
tE+1

]
≤ 𝔼

[
tE

]
− 𝜂𝔼

[
⟨∇tE, 𝑔tE⟩

]
+
𝐿1𝜂

2

2
𝔼
[
‖
‖𝑔tE

‖
‖

2
2

]

(𝑏)
= 𝔼

[
tE

]
− 𝜂‖‖∇tE

‖
‖

2
2 +

𝐿1𝜂
2

2
𝔼
[
‖
‖𝑔𝑖,tE

‖
‖

2
2

]

(𝑐)
≤ 𝔼

[
tE

]
− 𝜂‖‖∇tE

‖
‖

2
2 +

𝐿1𝜂
2

2
𝐺

2

where (a) follows from 𝐿1-smooth bound, (b) follows from
Assumption 2, and (c) follows Assumption 3. Then rearranging
and summing 𝐸 steps, we have

𝔼
[
(𝑡+1)𝐸

]
≤ 𝔼

[
tE

]
− 𝜂

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 +

𝐿1𝜂
2EG2

2
◽

Lemma 2. Let Assumptions 3 and 4 hold. After (𝑡 + 1)𝐸 train-
ing of UAV , we mark the stage where the global prototype is sent to
all UAVs with (𝑡 + 1)𝐸 + 1

2
. The loss function of any UAV can be

bounded as

𝔼
[

(𝑡+1)𝐸+ 1
2

]

≤ 𝔼
[
(𝑡+1)𝐸

]
+ 𝜆𝐿2𝜂EG

Proof. We add zero terms to (𝑡+1)𝐸+ 1
2

as follows:

(𝑡+1)𝐸+ 1
2
= (𝑡+1)𝐸 + (𝑡+1)𝐸+ 1

2
− (𝑡+1)𝐸

(𝑎)
= (𝑡+1)𝐸 + 𝜆 ∥ 𝑛

(
𝜙
𝑛,(𝑡+1)𝐸

)

− 𝑝(𝑡+2)𝐸 ∥2 −𝜆 ∥ 𝑛
(
𝜙
𝑛,(𝑡+1)𝐸

)
− 𝑝(𝑡+1)𝐸 ∥2

(𝑏)
≤ (𝑡+1)𝐸 + 𝜆

‖
‖
‖
𝑝(𝑡+2)𝐸 − 𝑝(𝑡+1)𝐸

‖
‖
‖2

(𝑐)
= (𝑡+1)𝐸 + 𝜆

‖
‖
‖
‖
‖
‖

|𝑁|∑

𝑛=1
𝑞
𝑛
𝑝
𝑛,(𝑡+1)𝐸 −

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛
𝑝
𝑛,tE

‖
‖
‖
‖
‖
‖2

(𝑑)
= (𝑡+1)𝐸 + 𝜆 ∥

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛

1
∣ 𝐷

𝑛
∣

∣𝐷
𝑛
∣∑

𝑘=1

(

𝑛

(
𝜙
𝑛,(𝑡+1)𝐸 ; 𝑥𝑛,𝑘

)

−
𝑛

(
𝜙
𝑛,tE; 𝑥𝑛,𝑘

))
∥2 .

(𝑒)
≤ (𝑡+1)𝐸 + 𝜆

∣𝑁 ∣∑

𝑛=1

𝑞
𝑛

∣ 𝐷
𝑛
∣

∣𝐷
𝑛
∣∑

𝑘=1
∥ 

𝑛

(
𝜙
𝑛,(𝑡+1)𝐸 ; 𝑥𝑛,𝑘

)

− 
𝑛

(
𝜙
𝑛,tE; 𝑥𝑛,𝑘

)
∥2

(𝑓 )
≤ (𝑡+1)𝐸 + 𝜆𝐿2

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛

‖
‖
‖
𝜙
𝑛,(𝑡+1)𝐸 − 𝜙𝑛,tE

‖
‖
‖2

(𝑔)
≤ (𝑡+1)𝐸 + 𝜆𝐿2

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛

‖
‖
‖
𝜔
𝑛,(𝑡+1)𝐸 − 𝜔𝑛,tE

‖
‖
‖2

(ℎ)
≤ (𝑡+1)𝐸 + 𝜆𝐿2𝜂

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛

𝐸−1∑

𝑒=0

‖
‖𝑔𝑛,tE+𝑒

‖
‖2

In the above equations, 𝑞
𝑛

is the aggregation weight. (a) follows
from the definition of the loss function. (b) follows ∥𝑎 − 𝑏∥2 −
∥𝑎 − 𝑐∥2 ≤ ∥𝑏 − 𝑐∥2. (c) and (d) follow the definition of global
prototype and local prototype, respectively. (e) and (h) follow
from ‖

‖
∑
𝑎
𝑖

‖
‖2 ≤

∑
‖
‖𝑎𝑖

‖
‖2. (f) follows from 𝐿2-Lipschitz smooth

bound. (g) follows from 𝜙
𝑛

is a subset of 𝑤
𝑛
.

Take expectations on both sides, then

𝔼
[

(𝑡+1)𝐸+ 1
2

]

≤ 𝔼
[
(𝑡+1)𝐸

]
+ 𝔼

[

𝜆𝐿2𝜂

∣𝑁 ∣∑

𝑛=1
𝑞
𝑛

𝐸−1∑

𝑒=0
𝔼[‖‖𝑔𝑛,tE+𝑒‖‖2

]

≤ 𝔼
[
(𝑡+1)𝐸

]
+ 𝜆𝐿2𝜂

𝐸−1∑

𝑒=0
𝔼
[
∥ 𝑔

𝑛,tE+𝑒 ∥2
]

(𝑎)
≤ 𝔼

[
(𝑡+1)𝐸

]
+ 𝜆𝐿2𝜂EG

where (a) follows the Assumption 3. ◽

Theorem 1. (Non-convex convergence rate) Let Assumptions
1–4 hold and assume∗ is the local optimal. For any UAV , its con-
vergence rate is bound as follows:

1
TE

𝑇−1∑

𝑡=0

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 ≤

𝔼
[
0 − ∗

]

𝜂ET
+
𝐿1𝜂𝐺

2

2
+ 𝜆𝐿2𝐺

Proof. Substituting Lemma 1 to Lemma 2, we have

𝔼
[

(𝑡+1)𝐸+ 1
2

]

≤𝔼
[
tE

]
−𝜂

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 +

𝐿1𝜂
2EG2

2
+𝜆𝐿2𝜂EG

Then we have

𝜂

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 ≤ 𝔼

[

tE − (𝑡+1)𝐸+ 1
2

]

+
𝐿1𝜂

2EG2

2
+ 𝜆𝐿2𝜂EG

Rearrange and sum 𝑡 from 0 to 𝑇 − 1 (𝑇 iteration), then we have
the convergence rate as follows:

1
TE

𝑇−1∑

𝑡=0

𝐸−1∑

𝑒=0

‖
‖∇tE+𝑒

‖
‖

2
2 ≤

𝔼
[
0 − ∗

]

𝜂TE
+
𝐿1𝜂𝐺

2

2
+ 𝜆𝐿2𝐺

◽

In general, the prototype-based UAV-assisted edge collaborative
learning method we propose can converge to bounded as the
number of global rounds 𝑇 increases.
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6 | Experiments

In this section, we implement the proposed prototype-based joint
optimization and training system. Additionally, we will conduct
a thorough verification of two specific software modules within
this system.

6.1 | Optimization Module

6.1.1 | Experimental Setup

To demonstrate the effectiveness of our optimization module, we
simulate a UAV monitoring scenario on a 2D plane, including 10
UAVs and 30 objects. Given its initial position, the optimization
module needs to set the target position for each UAV. We set this
two-dimensional space to be 100 m× 100 m, which means scale
𝑠area = 100 m. If there is no special note, 10 UAVs will monitor
30 objects randomly located in this two-dimensional space.

In the parameter setting, we set hovering power 𝑄
ℎ

and move-
ment power 𝑄

𝑚
as 50 W and 100 W. The movement speed of all

UAVs is 5 m∕s. The size of the prototype vector corresponding
to one object is 100 KB. The local training round is 5 and the
global training round is 100. The range of computing frequency
is [1, 10] GHz and the transmission power is within [0.1,1] W.
Channel gain ℎ

𝑆
is set to 10−3 and background noise𝑁nos is 10−9.

The initial energy that every UAV has is 107. Every UAV collects
100 samples after flying to the designed positions.

We choose two representative methods including a grid-based
method and a random-based method for comparisons. These two
methods are chosen as baselines in many optimization problems,
and can also be used to solve non-negative Monotone Submodu-
lar Function Maximization under a Uniform Matroid constraint.

1. Grid-based algorithm (Grid): Grid-based search algorithms
systematically explore the solution space on a predefined
grid to find the optimal solution. It ensures comprehen-
sive coverage. Its computational complexity is high, espe-
cially when the dimension increases. Grid search can pro-
vide more accurate path planning.

2. Random-based method (Random): Random-based search
algorithms search for potential solutions in the solution
space through random sampling. They are more flexible and
can handle high-dimensional problems, but may miss some
solutions. Random search is suitable for quickly exploring a
large range of solution space.

Our performance metric is global cost, which is the weighted
sum of prototype error and energy consumption. We set 𝑤1 and
𝑤2 as 0.5, which means we balance prototype error and energy
consumption.

6.1.2 | Experimental Results

We fix the number of objects 𝑁
𝑜

to 30 and change the number
of UAVs 𝑁 to measure the global cost of different methods. As
shown in Figure 3, the increase in the number of UAVs causes the

FIGURE 3 | Global cost versus N.

FIGURE 4 | Global cost versus 𝑁
𝑜
.

global cost to show a downward trend. This is because more UAVs
will cover more monitored objects, reducing the prototype error.
On the other hand, it is because all UAVs obtain the best comput-
ing frequency and transmission power, so the energy consump-
tion is controlled. Our method reduces the global cost by 12.31%
and 36.11% compared with the grid-based and random-based
methods.

We fix the number of UAVs 𝑁 to 10 and change the number of
objects 𝑁

𝑜
to measure the global cost of different methods. As

shown in Figure 4, the increase in the number of objects𝑁
𝑜

under
the premise of the unchanged number of UAVs causes the proto-
type error to gradually increase, so the overall global cost shows
an increasing trend. When the number of objects 𝑁

𝑜
is 40, our

method reduces the global cost by 23.71% and 48.01% compared
with the grid-based and random-based methods.

We change the monitoring range of the UAVs when the num-
ber of UAVs is 10 and the number of objects is 30. Different

12 of 18 Software: Practice and Experience, 2024
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FIGURE 5 | Global cost versus 𝑑
𝑁

.

TABLE 2 | Energy consumption and prototype error under different
weights.

𝒘1, 𝒘2 Energy consumption Prototype error

0.1, 0.9 310.12 5791.17
0.9, 0.1 5882.24 686.96

ranges mean different detection capabilities of UAVs. As shown
in Figure 5, all methods reduce the global cost as the monitor-
ing range of the UAVs increases. Our method achieves the lowest
global cost and effectively balances prototype error and energy
consumption.

We modify different weights and show how our approach opti-
mizes prototype error and energy consumption under different
weights. As shown in Table 2, when 𝑤2∕𝑤1 = 9, our method
will tend to optimize energy consumption instead of prototype
error. In contrast, our approach tends to optimize prototype error
rather than energy consumption when 𝑤1∕𝑤2 = 9. In practical
application, we can adjust different weights to alternatively opti-
mize different targets.

In addition, we also evaluate the global cost of every method
under different sample numbers 𝐷

𝑛
, different scene scales 𝑠area,

and different suspension powers 𝑄
ℎ
. Figure 6 shows that the

global cost will increase as the number of samples collected by
the UAV increases. When the number of samples is 140, the
global cost consumed by our method is 5925, which is smaller
than other methods. When the scenario scales up, since the
number of objects remains the same, all methods need to plan
the UAVs to fly a longer distance to collect data. As shown in
Figure 7, Our method can still complete the task at the lowest
cost under different scenario scales. Lastly, we compare the global
cost of different methods under different hovering powers𝑄

ℎ
. As

the hovering power increases, all methods will consume more
global costs. However, our method reduces the global cost by
35.25% and 36.06% compared with the grid-based method and the
random-based method.

FIGURE 6 | Global cost versus ∣𝐷
𝑛
∣.

FIGURE 7 | Global cost versus 𝑠area.

In summary, our method achieves the lowest global cost when
the number of drones, the number of objects, and the monitoring
radius are different. By jointly optimizing energy consumption
and prototype error, our method balances energy consumption
and training performance in Figure 8.

6.2 | Training Module

6.2.1 | Experimental Setup

We conduct experiments on a simulation network scenario con-
sisting of multiple UAVs and an edge server. We set the number
of UAVs to 40, and these UAVs can communicate with an edge
server. We set up three datasets to make all UAV nodes train dif-
ferent model structures. The datasets we used are introduced as
follows:

1. MNIST dataset: MNIST dataset consists of 70,000 grayscale
images of handwritten digits. Every image has a 28 × 28

13 of 18
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FIGURE 8 | Global cost versus 𝑄
ℎ
.

pixel resolution. MNIST dataset is divided into 60,000 train-
ing images and 10,000 test images.

2. CIFAR-10 dataset: The CIFAR-10 dataset is widely used in
image classification tasks. It contains 60,000 color images
with a resolution of 32 × 32 pixels, spread evenly across 10
different classes. Each class has 6000 images, with 50,000
used for training and 10,000 for testing.

3. CIFAR-100 dataset: The CIFAR-100 dataset is an extension
of CIFAR-10, containing 60,000 color images at the same 32
× 32 resolution. It contains 100 different classes, each con-
taining 600 images. The whole dataset is split into 50,000
training images and 10,000 test images. Each class is a sub-
class of 20 larger superclasses.

The model structures UAV trained are different in multiple
datasets. For MNIST and CIFAR-10 datasets, we use the two-layer
CNN structure. For the CIFAR-100 dataset, we use the ResNet-8
structure. We use the Dirichlet distribution parameter alpha to
control the data heterogeneity. We divide the whole dataset with
a ratio of 0.7, which means the ratio of the training set to the
test set is 7:3. All the UAVs train models for 100 communica-
tion rounds. The batch size is set as 10 and the Adam optimizer
with 0.005 initial learning rate. According to the description of
Section 2, current collaborative learning methods can be classi-
fied into four categories. Our proposed prototype-based training
method improves model performance by transmitting prototypes.
Therefore, we list three baselines representing model-based,
logits-based, and data-based to compare our proposed collabora-
tive learning method. These three methods represent the most
commonly used UAV joint training methods and therefore can
be chosen as our baselines.

1. Model-based method [11]: The model-based approach
enables collaborative training between UAVs and an edge
server through two main processes: model aggregation and
model release. In model aggregation, the learning contribu-
tions from each UAV are combined into a unified model,
while model release involves distributing the updated

model back to the UAVs. This collaboration enhances the
overall performance of the system by allowing UAVs to ben-
efit from shared insights and improve their individual learn-
ing processes.

2. Logits-based method [33]: In the logits-based method, the
edge server not only performs aggregation but also main-
tains a larger model. Knowledge distillation is continuously
performed through the logits transmission to improve the
UAV model’s performance.

3. Data-based method [10]: The data-based method needs the
auxiliary dataset to train models. This method requires an
additional encoder and decoder network on the UAVs. Data
is processed through an encoder and decoder to protect
the user privacy and then is transmitted to assist model
training.

In our experiment, we set the Dirichlet distribution parameter
𝛼 to 0.1 and 0.3 to simulate data distributions in two different
environments. Adjusting the Dirichlet distribution parameter is
a commonly used method in federated learning setting [10, 42],
and different data distributions are generated to simulate differ-
ent heterogeneous scenarios.

1. 𝛼 = 0.1: a more heterogeneous data distribution, indicating
higher class bias. In this case, certain categories dominate
the data points, making it ideal for evaluating the model’s
robustness and adaptability in handling imbalanced class
distributions.

2. 𝛼 = 0.3: the data distribution is more uniform, represent-
ing a lower diversity scenario where data points across cat-
egories are relatively close together. This setup is suitable
for testing the model’s performance under balanced class
distributions.

These two setups allow for a comprehensive analysis of the
model’s performance across varying data distributions. We also
use two metrics to measure different methods. The first perfor-
mance metric is the average model precision of all the UAVs after
100 communication rounds. The second metric is the communi-
cation burden in a round.

6.2.2 | Experimental Results

Our training method is superior to other comparison methods
for accuracy improvement. When 𝛼 = 0.1, our training method
obtains higher model performance compared with other meth-
ods and the highest accuracy is 98.61%. For the MNIST dataset,
in Figure 9, our method makes the model performance remain
stable after about 40 rounds of training. This means that higher
model performance can be achieved with fewer rounds, thereby
greatly reducing the energy consumption of the UAVs. For the
CIFAR-10 dataset, in Figure 10, the model trained by our method
achieves the highest accuracy and outperforms the Logits-based
method and the Data-based method. Our method also achieves
better performance than the logits-based method, with the model
accuracy improved by 2.4%. As shown in Figure 11, our method
also achieves the highest accuracy compared with other methods
in the CIFAR-100 dataset.
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FIGURE 9 | Accuracy (MNIST, 𝛼 = 0.1).

FIGURE 10 | Accuracy (CIFAR-10, 𝛼 = 0.1).

FIGURE 11 | Accuracy (CIFAR-100, 𝛼 = 0.1).

FIGURE 12 | Accuracy (MNIST, 𝛼 = 0.3).

FIGURE 13 | Accuracy (CIFAR-10, 𝛼 = 0.3).

When 𝛼 = 0.3, as shown in Figure 12, in the MNIST dataset,
our method also achieves the highest average model accu-
racy of 98.41%, which outperforms the Model-based method,
Logits-based method, and Data-based method by 6.35%, 2.68%,
and 20.92%. For the CIFAR-10 dataset, we present results in
Figure 13. Our method outperforms the three methods by 13.10%,
5.41%, and 17.25%. Our method is also verified in the CIFAR-100
dataset. As shown in Figure 14, our method outperforms the
other three methods by 8.22%, 3.62%, and 22.51%.

Besides, we compute the transmission burden of a communi-
cation round in the CIFAR-10 dataset. Experimental results in
Table 3 shows our method can complete knowledge sharing
between UAVs and the edge server with only 0.11 M informa-
tion transferred. Comparing other methods, our method saves at
least 96% transmission burden. As the number of training rounds
increases, our method can greatly improve the overall training
speed. This means our method supports efficient training and
saves more battery resources for UAVs.
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FIGURE 14 | Accuracy (CIFAR-100, 𝛼 = 0.3).

TABLE 3 | Transmission burden of different methods in a communi-
cation round.

Methods

Transmission burden
in a communication

round

Model-based method 3.05M
Logits-based method 32.86M
Data-based method 59.86M
Ours 0.11M

In summary, our approach allows UAVs to gain higher accuracy
with a low transmission burden, outperforming all the compared
methods. We notice that the logits-based method also achieves
good performance, so we can consider combining logits and pro-
totypes to complete collaborative training.

7 | Discussion

We discuss the replaceability of our proposed software system
and the scalability of scenarios to further illustrate the advantages
of our approach. In addition, we discuss two specific examples
including continual learning and interference range communi-
cation to demonstrate the scalability of our approach.

Replaceable modules: Our software system consists of an opti-
mization module and a training module, which interact with each
other and transmit the information needed by each other to per-
form collaborative training under the UAV-assisted edge comput-
ing network. We can replace any of the modules individually to
complete collaborative training in more complex environments.
On the one hand, the optimization module can be replaced with
a new one, which defines different optimization problems such
as considering service satisfaction [43, 44], energy consumption
[45], and latency [3]. The new algorithm can replace the cur-
rent optimization solution to balance the new targets. On the
other hand, the training module can be replaced with a new

collaborative training method that can use prototypes and logits
for collaborative training of heterogeneous models to improve
accuracy further.

Scalable scenarios: The collaborative learning method dis-
cussed in this paper is based on the parameter server architecture.
Our training method can be extended to any architecture. For
example, in a decentralized architecture [46], our method allows
each UAV to transfer and aggregate prototypes with its neighbor-
ing UAVs. Each UAV aggregates the prototypes from its own UAV.
The aggregated prototypes can be used not only for model person-
alized training but also for reasoning based on the distance from
the new sample to each class prototype. In a semi-decentralized
architecture [47], our method can also be easily scalable. By set-
ting up multiple edge servers for regular aggregation, the perfor-
mance of heterogeneous models can be improved. In addition,
our method is also applicable to other resource-constrained sce-
narios rather than UAVs. For example, Our method can be easily
extended to collaborative learning on resource-limited embedded
devices.

Continual learning: In our collaborative training framework
involving a single edge server and multiple UAVs, the training
module can be designed to support continuous learning [48] with
great flexibility. Our module allows the model to adapt to new
data and evolving environments without the need for complete
retraining. By incorporating mechanisms such as incremental
learning and online updates [49], the training module can effi-
ciently integrate new information as it becomes available. Fur-
thermore, the training module can leverage transfer learning
techniques, allowing knowledge gained from previous tasks to be
applied to new ones, thereby accelerating the learning process.
The modular design also facilitates easy integration of new algo-
rithms or techniques as advancements in AI arise. This adaptabil-
ity ensures that the training module can continuously improve
performance while minimizing downtime, making it a vital com-
ponent of our overall framework for efficient and responsive
UAV-assisted edge computing.

Interference range communications: Our optimization
problem can be extended to a scenario of interference range
communication [50], where the coverage of each edge server
is modeled as a circle. In planning the trajectory of the UAVs,
it is essential to ensure that all flight paths remain within the
range of the edge server to maintain effective communication.
We can redefine the optimization problem by modifying the
constraints accordingly and identifying different candidate
positions for the UAVs. By designing a new algorithm for this
problem and replacing optimization modules, we can effectively
solve this problem, optimizing both communication efficacy and
operational efficiency.

Asynchronous collaborative learning: Our proposed method
is suitable for asynchronous UAV collaborative learning. In
UAV-assisted edge computing networks, the most notable fea-
ture of asynchronous collaborative learning is that the edge server
does not wait for all UAVs to complete training before aggregating
global prototypes. Therefore, our training module can modify the
workflow of the edge server. The edge server can aggregate after
obtaining a certain number of prototypes from the UAVs instead
of receiving the prototypes sent by all UAVs. For the lagging UAVs,
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the edge server still sends the latest global prototype to assist their
next training round.

8 | Conclusions

In this paper, we propose a prototype-based joint training
and optimization software system for collaborative learning in
UAV-assisted edge computing networks. Our system consists of
two interacting modules: an optimization module and a training
module. We first define the optimization problem of minimiz-
ing prototype error and energy consumption. Through problem
transformation, we propose an algorithm with approximation
guarantees to solve this problem. Our algorithm is integrated with
the optimization module, enabling UAVs to obtain the optimal
positions for data collection. After data collection, the training
module enables multiple UAVs and an edge server to collabora-
tively train a model by lightweight prototype sharing and global
prototype aggregation. We implement these two modules in sim-
ulation experiments and verify the superiority of our proposed
system from multiple metrics.
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